WebAssembly lld port¶
The WebAssembly version of lld takes WebAssembly binaries as inputs and produces a WebAssembly binary as its output. For the most part it tries to mimic the behaviour of traditional ELF linkers and specifically the ELF lld port. Where possible the command line flags and the semantics should be the same.
Object file format¶
The WebAssembly object file format used by LLVM and LLD is specified as part of the WebAssembly tool conventions on linking.
This is the object format that the llvm will produce when run with the
wasm32-unknown-unknown
target.
Usage¶
The WebAssembly version of lld is installed as wasm-ld. It shared many common linker flags with ld.lld but also includes several WebAssembly-specific options:
- --no-entry¶
Don’t search for the entry point symbol (by default
_start
).
- --export-table¶
Export the function table to the environment.
- --import-table¶
Import the function table from the environment.
- --export-all¶
Export all symbols (normally combined with –no-gc-sections)
Note that this will not export linker-generated mutable globals unless the resulting binaryen already includes the ‘mutable-globals’ features since that would otherwise create and invalid binaryen.
- --export-dynamic¶
When building an executable, export any non-hidden symbols. By default only the entry point and any symbols marked as exports (either via the command line or via the export-name source attribute) are exported.
- --global-base=<value>¶
Address at which to place global data.
- --no-merge-data-segments¶
Disable merging of data segments.
- --stack-first¶
Place stack at start of linear memory rather than after data.
- --compress-relocations¶
Relocation targets in the code section are 5-bytes wide in order to potentially accommodate the largest LEB128 value. This option will cause the linker to shrink the code section to remove any padding from the final output. However because it affects code offset, this option is not compatible with outputting debug information.
- --allow-undefined¶
Allow undefined symbols in linked binary. This is the legacy flag which corresponds to
--unresolve-symbols=ignore
+--import-undefined
.
- --allow-undefined-file=<filename>¶
Like
--allow-undefined
, but the filename specified a flat list of symbols, one per line, which are allowed to be undefined.
- --unresolved-symbols=<method>¶
This is a more full featured version of
--allow-undefined
. The semanatics of the different methods are as follows:report-all:
Report all unresolved symbols. This is the default. Normally the linker will generate an error message for each reported unresolved symbol but the option
--warn-unresolved-symbols
can change this to a warning.ignore-all:
Resolve all undefined symbols to zero. For data and function addresses this is trivial. For direct function calls, the linker will generate a trapping stub function in place of the undefined function.
import-dynamic:
Undefined symbols generate WebAssembly imports, including undefined data symbols. This is somewhat similar to the –import-undefined option but works all symbol types. This options puts limitations on the type of relocations that are allowed for imported data symbols. Relocations that require absolute data addresses (i.e. All R_WASM_MEMORY_ADDR_I32) will generate an error if they cannot be resolved statically. For clang/llvm this means inputs should be compiled with -fPIC (i.e. pic or dynamic-no-pic relocation models). This options is useful for linking binaries that are themselves static (non-relocatable) but whose undefined symbols are resolved by a dynamic linker. Since the dynamic linking API is experimental, this option currently requires –experimental-pic to also be specified.
- --import-memory¶
Import memory from the environment.
- --import-undefined¶
Generate WebAssembly imports for undefined symbols, where possible. For example, for function symbols this is always possible, but in general this is not possible for undefined data symbols. Undefined data symbols will still be reported as normal (in accordance with
--unresolved-symbols
).
- --initial-heap=<value>¶
Initial size of the heap. Default: zero.
- --initial-memory=<value>¶
Initial size of the linear memory. Default: the sum of stack, static data and heap sizes.
- --max-memory=<value>¶
Maximum size of the linear memory. Default: unlimited.
- --no-growable-memory¶
Set maximum size of the linear memory to its initial size, disallowing memory growth.
By default the function table is neither imported nor exported, but defined for internal use only.
Behaviour¶
In general, where possible, the WebAssembly linker attempts to emulate the behaviour of a traditional ELF linker, and in particular the ELF port of lld. For more specific details on how this is achieved see the tool conventions on linking.
Function Signatures¶
One way in which the WebAssembly linker differs from traditional native linkers is that function signature checking is strict in WebAssembly. It is a validation error for a module to contain a call site that doesn’t agree with the target signature. Even though this is undefined behaviour in C/C++, it is not uncommon to find this in real-world C/C++ programs. For example, a call site in one compilation unit which calls a function defined in another compilation unit but with too many arguments.
In order not to generate such invalid modules, lld has two modes of handling such
mismatches: it can simply error-out or it can create stub functions that will
trap at runtime (functions that contain only an unreachable
instruction)
and use these stub functions at the otherwise invalid call sites.
The default behaviour is to generate these stub function and to produce
a warning. The --fatal-warnings
flag can be used to disable this behaviour
and error out if mismatched are found.
Exports¶
When building a shared library any symbols marked as visibility=default
will
be exported.
When building an executable, only the entry point (_start
) and symbols with
the WASM_SYMBOL_EXPORTED
flag are exported by default. In LLVM the
WASM_SYMBOL_EXPORTED
flag is set by the wasm-export-name
attribute which
in turn can be set using __attribute__((export_name))
clang attribute.
In addition, symbols can be exported via the linker command line using
--export
(which will error if the symbol is not found) or
--export-if-defined
(which will not).
Finally, just like with native ELF linker the --export-dynamic
flag can be
used to export symbols in the executable which are marked as
visibility=default
.
Imports¶
By default no undefined symbols are allowed in the final binary. The flag
--allow-undefined
results in a WebAssembly import being defined for each
undefined symbol. It is then up to the runtime to provide such symbols.
--allow-undefined-file
is the same but allows a list of symbols to be
specified.
Alternatively symbols can be marked in the source code as with the
import_name
and/or import_module
clang attributes which signals that
they are expected to be undefined at static link time.
Stub Libraries¶
Another way to specify imports and exports is via a “stub library”. This feature is inspired by the ELF stub objects which are supported by the Solaris linker. Stub libraries are text files that can be passed as normal linker inputs, similar to how linker scripts can be passed to the ELF linker. The stub library is a stand-in for a set of symbols that will be available at runtime, but doesn’t contain any actual code or data. Instead it contains just a list of symbols, one per line. Each symbol can specify zero or more dependencies. These dependencies are symbols that must be defined, and exported, by the output module if the symbol is question is imported/required by the output module.
For example, imagine the runtime provides an external symbol foo
that
depends on the malloc
and free
. This can be expressed simply as:
#STUB
foo: malloc,free
Here we are saying that foo
is allowed to be imported (undefined) but that
if it is imported, then the output module must also export malloc
and
free
to the runtime. If foo
is imported (undefined), but the output
module does not define malloc
and free
then the link will fail.
Stub libraries must begin with #STUB
on a line by itself.
Garbage Collection¶
Since WebAssembly is designed with size in mind the linker defaults to
--gc-sections
which means that all unused functions and data segments will
be stripped from the binary.
The symbols which are preserved by default are:
The entry point (by default
_start
).Any symbol which is to be exported.
Any symbol transitively referenced by the above.
Weak Undefined Functions¶
On native platforms, calls to weak undefined functions end up as calls to the
null function pointer. With WebAssembly, direct calls must reference a defined
function (with the correct signature). In order to handle this case the linker
will generate function a stub containing only the unreachable
instruction
and use this for any direct references to an undefined weak function.
For example a runtime call to a weak undefined function foo
will up trapping
on unreachable
inside and linker-generated function called
undefined:foo
.
Missing features¶
Merging of data section similar to
SHF_MERGE
in the ELF world is not supported.No support for creating shared libraries. The spec for shared libraries in WebAssembly is still in flux: https://github.com/WebAssembly/tool-conventions/blob/main/DynamicLinking.md